Protecting privacy with deep-learning tools

Data analytics

Protecting privacy with deep-learning tools

n the era of big data, the unprecedented speed and volume of data collection poses benefits as well as risks. The large amount of collected data contains critical information for daily homeland security operations as well as potential usage to enhance analytical capabilities for better decision-making.

Creating new methods to preserve data privacy

Data sharing within DHS agencies and across components is challenging because of both privacy and security concerns. Many agencies remove sensitive but critical information from reports or documents to preserve privacy while others refrain from sharing data that could be useful to homeland security efforts due to the challenges of meeting and maintaining privacy requirements.

Guarding sensitive data with secure computations

The use of personal information is essential for homeland security efforts, but it is also a balancing act securing this information and protecting individual privacy concerns that exist in the sharing and use of sensitive information such as surveillance images/videos, biometrics, and other individual-identifying data that is collected and generated from multiple sources across the Homeland Security Enterprise.

Assessing trustworthiness of AI-enabled systems

The advancement of artificial intelligence (AI), including machine learning (ML) and increasingly autonomous systems, has resulted in a push for technical standards that can assess the trustworthiness of these technologies. Developing standards have the potential to drive the design and development of trustworthy systems, and to more cost-effectively evaluate AI-enabled systems during technology acquisition or regulation.

Four people looking over a document who are all gathered around a table with open laptops

Improving effectiveness of procurement processes

Properly managed contractor/supplier management systems include a robust performance monitoring and improvement mechanism. The Department of Homeland Security (DHS) is beginning to invest artificial intelligence/machine learning (AIML) technology into the Contractor Performance Assessment Reporting System (CPARS).

Silhouettes of people, with backpacks, walking in a line to the right, led by children

Predicting cross-border migration patterns

The challenge of securing the safe, orderly, and humane processing of migrants who arrive at our Southwest border is renderedincreasingly complicated due to the growing volume and substantial variations of this influx of migrants.